Center of Mass in

Astrophysics

Star/planet systems (and other
objects) rotate about center of mass
Imagine if our solar system only consisted of the Sun and Jupiter. Where would the center of mass be?

Average Distance from Sun to Jupiter is 778 million km

$$
1.9 \times 10^{27} \mathrm{~kg}
$$

$2.0 \times 10^{30} \mathrm{~kg}$

Jupiter

Radius of the sun is $695,500 \mathrm{~km}$

A diver can reduce her moment of inertia by a factor of about 3.5 when changing form the straight position to the tuck position. If she makes two rotations in 1.5 s when in the tuck position, what is her angular speed (rev/s) when in the straight position?

How should we approach this problem?

Compare to next problem

Sammy is on Top Chef and Padma tells him to hold a 2.00 kg carton of milk at arm's length. What force F_{B} must be exerted by the biceps muscle?

What does this have to do with torque or equilibrium?
Everyone stand up. Grab something heavy. Is it harder to hold it straight out or with your elbows bent?
A. Straight out
B. With elbows bent
C. Same for both

Mary is about to do a push-up. Her center of gravity lies directly above a point on the floor which is $d_{1}=1.0 \mathrm{~m}$ from her feet and $\mathrm{d}_{2}=0.7 \mathrm{~m}$ from her hands.
A) If her mass is 50 kg , what is the force exerted by the floor on her hands, assuming that she holds this position?
B) What is the force exerted by the floor on her feet?

Signs in Equilibrium

What tension will be needed in the rope to support the sign's 15 kg weight and keep it from falling off the wall?

Wall

Find the centripetal acceleration and final rotational kinetic energy
of a amusement park 1000 kg centrifuge ($\mathrm{r}=5 \mathrm{~m}$) that starts from rest and after 5 second is going 3 $\mathrm{rad} / \mathrm{s}$. Treat like a hoop $\left(\mathrm{I}=\mathrm{MR}^{2}\right)$.

Relations

Linear Motion

Mass m

Linear velocity \mathbf{v}
Translational KE $\frac{1}{2} m v^{2}$
Linear momentum $\mathbf{p}=m \mathbf{v}$

$$
\vec{F}_{n e t}=\sum \vec{F}=\frac{\Delta \vec{p}}{\Delta t}
$$

Rotational Motion
Moment of Inertia I
Angular velocity ω
Rotational KE $\frac{1}{2} I \omega^{2}$

Angular momentum $L=I \omega$

$$
\tau_{\text {net }}=\sum \tau=\frac{\Delta L}{\Delta t}
$$

when m constant
Note: if I is constant, $\frac{\Delta L}{\Delta t}=\frac{I \omega-I \omega_{o}}{\Delta t}=\frac{I \Delta \omega}{\Delta t}=I \alpha$
I is less likely to be constant than mass

For constant α : $\omega=\omega_{o}+\alpha t$

$$
\Delta \theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}
$$

$\omega^{2}=\omega_{0}^{2}+20 \Delta \theta$

Example: A Rotating Disk

Disk 1 is rotating freely and has angular velocity ω_{i} and moment of inertia I_{1} about its symmetry axis, as shown. It drops onto disk 2 of moment of inertia I_{2}, initially at rest. Because I_{2} of kinetic friction, the two disks eventually attain a common angular
 velocity ω_{f}.
(a) What is ω_{f} ?
(b) What is the ratio of final to initial kinetic energy? $L_{f}=L_{i}$

$$
K=\frac{1}{2} I \omega^{2}=\frac{(I \omega)^{2}}{2 I}=\frac{L^{2}}{2 I}
$$

$$
\begin{aligned}
& \left(I_{1}+I_{2}\right) \omega_{f}=I_{1} \omega_{i} \\
& \omega_{f}=\frac{I_{1}}{I_{1}+I_{2}} \omega_{i}=\frac{1}{1+\left(I_{2} / I_{1}\right)} \omega_{i}
\end{aligned}
$$

$$
\frac{K_{f}}{K_{i}}=\left(\frac{L^{2}}{2 I_{f}}\right) /\left(\frac{L^{2}}{2 I_{i}}\right)=\frac{I_{i}}{I_{f}}=\frac{I_{1}}{I_{1}+I_{2}}
$$

Example: A Stellar Performance

A star of radius $R_{i}=2.3 \times 10^{8} \mathrm{~m}$ rotates initially with an angular speed of $\omega_{i}=2.4 \times 10^{-6} \mathrm{rad} / \mathrm{s}$.

If the star collapses to a neutron star of radius $R_{f}=$ 20.0 km , what will be its final angular speed ω_{f} ?

$$
\begin{aligned}
& L_{i}=L_{f} \quad \Rightarrow \quad I_{i} \omega_{i}=I_{f} \omega_{f} \\
\omega_{f}= & \left(\frac{I_{i}}{I_{f}}\right) \omega_{i}=\frac{\frac{2}{5} M R_{i}^{2}}{\frac{2}{5} M R_{f}^{2}} \omega_{i}=\left(\frac{R_{i}}{R_{f}}\right)^{2} \omega_{i} \\
= & {\left[\frac{\left(2.3 \times 10^{8} \mathrm{~m}\right)}{\left(2.0 \times 10^{4} \mathrm{~m}\right)}\right]^{2}\left(2.4 \times 10^{-6} \mathrm{rad} / \mathrm{s}\right)=320 \mathrm{rad} / \mathrm{s} } \\
= & 3056 \mathrm{rpm}
\end{aligned}
$$

